Por twitter, recibo del Oxford English Dictionary una palabra diaria, y la del día de hoy fue solvable. Se me hizo muy cotorro que el diccionario incluyera entre sus acepciones el concepto de grupo soluble:
b.Math. Of a group: that may be regarded as the last of a finite series of groups of which the first is trivial, each being a normal subgroup of the next and each of the quotients being Abelian.
1892 E. Netto Theory of Substitutions xiv. 267 We may carry over the expressions ‘transitive’, ‘primitive’ and ‘non-primitive’, ‘simple’ and ‘compound’ from the group to the equation.‥ Conversely, we apply the term ‘solvable’, which is taken from the theory of equations, also to groups, and speak of solvable groups as those whose equations are solvable.1898 Amer. Jrnl. Math.20 277 The necessary and sufficient condition that a group is solvable is that its αth derivative (derived group) is unity.1929 Amer. Jrnl. Math.51 494 The total number of groups of order 72 is 50. Each of these groups is obviously solvable.1971 D. Gorenstein in M. B. Powell & G. Higman Finite Simple Groups ii. 66 The celebrated Feit-Thompson theorem that groups of odd order are solvable implies that every nonabelian simple group has even order.1982 Sci. Amer. Apr. 120/3 An equation is solvable by radicals if and only if the Galois group of the equation is a solvable group.
Entre las citas de ejemplos de uso, se encuentran dos libros de texto (de 1892 y 1971), un par de artículos de George Abram Miller en el American Journal of Mathematics ([1], [2]), y un reciente artículo en Scientific American que enuncia el teorema de Galois.
El Diccionario de la Real Academia Española, sin embargo, solo agrega la acepción que se puede resolver, aunque pone como ejemplo de uso “Problema soluble”: soluble en el DRAE.
Anuncios